
i -EW2rt to the -4M3G High Order-Language Working Group (HoLWQ)
44Janff S77 -W -

ExEcu]!ivE sumay

I>. LANGUAGE EVALUATION COORDINATING COM412TTEE

0 Prepared y~:

Seaiomrs CE1N-TACS V

I!WEM0 Fort Monmouth, NJ

Brown University
Peter Wegner' Providence, RI
(Techrrin~t A-J visor)

Derek/Morris), CENTACS, Fort Monmouth, NJ

Dougls A-1ite ADC, Rome, NY
XIAKrenl-02~r/ ELCSanDiego, CA
Lloy Capbal BR, AerdenMD

Calvn SowaterHAVIRWashington, DC

hApptoved f~t Public 10100M-

/ ~ tibuOo /;2lut

Table of Contents

0. Executive Summary

1. Introduction

1.1 Background
1.2 Languages and Contractors

2. The Requirements

2.0 General and Specific Requirements
2.1 Data and Types
2.2 Operations
2.3 Expressions and Parameters
2.4 Variables, Literals and Constants
2.5 Definition Facilities
2.6 Scopes and Libraries
2.7 Control Structures
2.8 Syntax and Comment Conventions
2.9 Defaults, Conditional Compilation, Language Restrictions
2.10 Efficient Object Representations
2.11 Program Environment
2.12 Translators
2.13 Language Definition, Standards and Support

3. Language Evaluations

3.0 Summary of Languages and Evaluations
3.1 PL/I Evaluation
3.2 Pascal Evaluation
3.3 ALGOL 63 Evaluation
3.4 HAL/S Evaluation
3.5 PEARL Evaluation
3.6 SPL/I Evaluation
3.7 PDL/2 Evaluation
3.8 LTR Evaluation
3.9 CS-4 Evaluation
3.10 LIS Evaluation
3.31 Euclid Evaluation VtsO f
3.12 ECL Evaluation NTIS 1rfto SC0111
3.13 Moral Evaluation not *, s
3.14 RTL/2 Evaluation UNAKNOUNCED -

3.15 FORTRAN Evaluation JUSTIFICATION
3.16 COBOL Evaluation
3.17 ALGOL 60 Evaluation of
3.18 TACPOL Evaluation IISTRIBUION/A¥AILAILITY COC.
3.19 CMS-2 Evaluation
3.2D SIMULA 67 Evaluation
3.21 Jovial J3B Evaluation
3.22 Jovial J73 Evaluation
3.23 Coral 66 Evaluation

4. Discussion, Recomnendations, and Conclusions

4.1 Discussion
4.2 Recommendations
4.3 Conclusions

5. Guide to the Supporting Documents

5.1 Language Requirements
5.2 Documents used as a basis for the Evaluation
5.3 Documents produced by the Language Evaluations

A

0.Executive Summr

he objectives.of the language evaluation coordinating

committee are to evaluate, summarize, and structure the findings

of the language evaluation reports. In this executive summary,

we present the essentials of these findings. An expanded

version of this summary is found in SectionA.

Among all the languages considered none was found that satisfies the

requirements so well that it could be adopted as the Common Language.

Each feature or capability mentioned in the requirements

document can essentially be found in some existing language,

hence, some minimal collection of languages exists which

collectively would contain all these features and capabilities.

However, there are important embedded computer system

applications that could make good use of all the major re-

quirements. In fact, most of the requirements would be

useful in any embedded computer system applications.

rH

All evaluators felt that the development of a single language satisfying

the requirements was a desirable goal.

3

- w

It is clearly possible to design a language by brute

force containing all the technical features and capabilities

of the requirements. Problems arise, however, when one adds the

general requirements such as simplicity, uniformity, reliability,

design integrity, implementation efficiency, etc.

The concensus of the evaluators was that it would be possible to produce

a language within the current state of the art meeting essentially all the

requirements.

Some evaluators felt that certain requirements should be

modified. However, it was felt almost unanimously that the de-

velopment of a language meeting essentially all of the requirements

was both feasible and desirable. The precise degree of trade-off

between potentially conflicting requirements (such as simplicity

and generality) can be determined only after a substantial

amount of additional work on the design of the language.

Almost all the evaluators felt that the process of designing a language

to satisfy all the requirements should start from some carefully chosen base

language.

4

Working from a base language would reduce the amount of

work required and would reduce the opportunities for making

errors. There was no consensus as to which base language to use,

but every evaluator indicated that some of the languages con-

sidered were more suitable for this role than others. There was

unanimous agreement among evaluators concerning the unsuitability

of certain languages to serve as base languages.

Even though almost all felt that a modification effort

should start from a base language, all felt that a design team

must have the freedom to make any changes to a base language they

feel is warranted. Hence, the specification for the design effort

should be carefully written to avoid any artificial or unde-

sirable restrictions on a design team. For example, upward com-

patibility with a base language should not be a restriction.

Without exception, the following languages were found by the evaluators

to be inappropriate to serve as base languages for a development of the Common

Language: FORTRAN, COBOL, TACPOL, CMS-II, JOVIAL J73, JOVIAL J3B, SIMULA 67,

ALGOL 60, and CORAL 66.

This should not be interpreted as a statement concerning

the technical merits of these languages. Some of the languages

on this list are among the most widely used of the languages con-

sidered. It is only a statement concerning their suitability to

serve as bases for a language modification relative to all the

other languages considered. The reasons for rejecting these

languages are varied and are discussed in some detail in

Section 3 of this report.

The languages that remain are: PASCAL, ALGOL 68, PL/I,

LIS, EUCLID, CS-4, PDL/2, RTL-2, LTR, PEARL, SPL/I, HAL/S,

ECL, and MORAL.

We believe the following recommendation is consistent with

almost all the evaluations.

Proposals should be solicited from appropriate language designers for

modification efforts using any of the languages PASCAL, PL/I, or ALGOL 68 as

base languages from which to start. These efforts should be directed toward

the production of a language that satisfies the DoD set of language require-

ments for embedded computer applications.

The languages that have not been found to be in-

appropriate to serve as base languages are HAL/S, PEARL, SPL/I,

PDL/2, LTR, RTL/2, MORAL, EUCLID, LIS, CS-4, and ECL. Most of

these are modifications of one of the languages PASCAL, PL/I, or

ALGOL 68 for an application area close to that with which we

are concerned. Many of these languages have features that

satisfy certain important DoD language requirements in especially

interesting ways. Hence, many of these languages are relevant

design experiences that should be considered. The design teams

should feel free to make as much use as is deemed appropriate of

any of these languages.

6

At some appropriate time some choice should be made among these design

efforts to determine which are most worthy of being continued to completion.

1. INTRODUCTION

1.1 Background

The high costs for software for systems developed within

the Department of Defense is receiving increased attention

from the highest levels of management. The major part of these

F costs is for software for what are called "embedded computer

systems." Such systems would include tactical weapon systems,

command and control systems, avionics systems, etc.

As part of the overall process of investigating the costs

of software, in January 1975 a High Order Language Working Group

(HOLWG) was chartered by the Department of Defense with repre-

sentatives from the three services. The purpose of this group

is to investigate the requirements and specifications for pro-

gramming languages for embedded computer applications and to

recommend the adoption or implementation of the necessary language

or languages to achieve an appropriate degree of commonality

of programming language usage in the services.

The first task undertaken by the HOLWG was to formulate a

set of requirements for a language, or a set of languages, for

these apnlications. This task which involved the user, research,

and development organizations in the services, and the general

research and industrial communities, resulted in Jan.1976 in

a document informally called "TINMA-N." This document which in-

volved several iterations was believed at the time to be the

final set of DoD language requirements for embedded computer

applications.

8

- -

The HOLWG then initiated a number of studies to investigate

how closely certain existing standard languages came to satisfy-

ing these requirements. Besides the language studies sponsored

by the services through the HOLWG, several other evaluations

of other existing languages against the TINMAN set of require-

ments were also volunteered. Some of these by organizations

outside the United States.

The present report has been prepared by a subcommittee of

the HOLWG. Its purpose is to report to the HOLWG a consolidation

of the evaluation studies. Based on the results reported from

these studies the subcommittee has attempted to resolve differences,

identify consensus positions, and to determine the basic findings

of these studies.

1.2 Languages and Contractors

The task of evaluating languages against the TINMAN re-

quirements was carried out by six contractors, two chosen by each

service. Softech and CSC were chosen by the Army. Intermetrics

and RLG were chosen by the Navy. IBM and SAI were chosen by the

Air Force. The 23 evaluated languages and the contractors who

evaluated them are indicated in figure 1. The languages above

the line represent the initial set of languages chosen for

evaluation,,while the languages below the line represent

languages added after the evaluation process was initiated.

9

I

J- -m

SOFTECA INTERMETRICS RLG CSC' SAI IBM OTHER

FORTRAN X x
'COBOL x x
PL/I X X
TACPOL X X X
HAL/S
CMS-2 X x
CS -4 x x x X
J-3B X X
J-73 X X
ALGOL 60 x
CORAL 66 X x x
ALGOL 68 X x
SIMULA 67 X
PASCAL X X

LIS X. x
LTR x
RTL/2 x
PEAiRL X x
SPL/I x
EUCLID X
MORAL X
ECL x
PDL/2 x

Figure 1.

*The IBM evaluation of PL/I was not done under the Air Force
sponsored contract.

2. The Requirements

In order to make this document more self contained we shall

briefly describe the set of DoD language requirements

used for the evaluations. The brief description of each re-

quirement given below is necessarily incomplete but does

give an idea of the nature of each requirement. From Jan. 1976

when the TINMAN document first appeared until the present time,

many comments and critiques have been prepared. These toge-

ther with a workshop on the TINMSAN requirements held at Cornell

in late Sept. and the intensive use of the requirements in

the language evaluations, has led to a better understanding of

how the requirements should be formulated, and resulted in a

new requirements document called the IRONTAU which appeared in

Jan. 1977. In this document the DoD requirements have been

organized in a very different fashion from that found in TINMAN,

but the requirements are sufficiently similar in substance

that the recommendations given here are not affected.

2.0 Organization of General and Specific Requirements

There are two levels of DoD requirements which we shall

refer to as general and specific. General requirements are

global language characteristics related to the overall design

objectives for the language while specific requirements are

concerned with specific language features. The general re-

quirements may be summarized as follows:

• 11

Simplicity: avoid unnecessary generality or complexity
Reliability: properties to aid in program safety and error

detection
Readability: readability is more important than writability
Maintainability: emphasize modularity, clarity, documentation,

few default5
Efficiency: no sacrifice of run time efficiency for generality
Implementability: state of the art features with known

implementation
Machine Independence: well defined interface to object machines
Portability: adaptable to different object machines and

different applications
Definition: unambiguous, complete, understandable definition

The above objectives reflect the fact that the costs of the

operations and maintenance part of the software life-cycle for

embedded computer applications are generally considerably greater

than the costs of program development, and the fact that embedded

computer applications are often subject to stringent real-time

constraints.

These general requirements serve to motivate the choice of

specific requirements, and in many instances constrain the way

that a specific requirement should be realized or implemented.

The 98 specific TINMAN language requirements are grouped

into the following 13 categories:

A. Data and Types (7 requirements)
B. Operations (11)
C. Expressions and Parameters (9)
D. Variables, Literals and Constants (6)
E. Definition Facilities (8)
F. Scopes and Libraries (7)
G. Control Structures (8)
H. Syntax and Comment Conventions (10)
I. Defaults, Conditional Compilation and Language Restrictions (7
J. Efficient Object Representations (5)
K. Program Environment (5)
L. Translators (9)
M. Language Definition, Standards and Control (6)

The above organization of language characteristics is some-

what different from the organization of language descriptions

12
- -.-

in programming language manuals and language definitions.

The IRONMAN requirements specification has reorganized the re-

quirements so that they correspond more closely to the order

of presentation of language features in language definition

documents, but has not substantially altered the overall re-

quirements for the common language. In order to bring the

reader up to date concerning requirements, the 13 categories

of IRONMAN requirements are listed below:

1. General Requirements (8)
2. Syntax and Comment Conventions (9)
3. Data Types (3)
4. Expressions (7)
5. Constants, Variables, and Declarations (7)
6. Control Structures (5)
7. Functions and Procedures (9)
8. Input-Output (5)
9. Parallel Processing (6)
10. Exception Handling (6)
11. Machine Dependent Specifications (6)
12. Library, Separate Compilation, Generic Definitions (4)
13. Standards, Translation and Support (7)

The 98 individual specific TINMAN requirements are briefly

characterized below.

2.1 Data and Types

The requirements in the "Data and Types" category may be

summarized as follows:

Al. Date types determinable at compile time and unalterable
at run time.

A2. Integer, fixed, float, Boolean, character, array and
record types.

A3. Precision specs for floating point arithmetic and
variables.

A4. Exact fixed point numbers with user specified range and
fractional part.

AS. Character sets with user defined collating sequence.
A6. Arrays with static lower bound and dynamic upper bound.
A7. Variant records fully discriminated at run time.

Al is a general requirement on data types. A2 specifies

the set of required data types. The remaining requirements

specify in greater detail the characteritics of required data

types. Requirement A7 is intended as a substitute for the

union data types.

2.2 Operations

The TINMAN requirements on operations may be summarized as

follows:

Bl. Assignment and reference operations for data types
B2. Equivalence operator for all data types
B3. Relational operations for numeric and enumeration types
B4. Arithmetic operations 4, -, *, /, , * , unary minus
B5. Truncation and rounding of least significant digits
B6. Boolean operators and, or, not, xor, short circuit mode
B7. Direct assignment for comformable composite data types
B8. No implicit type conversion
B9. No conversion required for numeric ranges, range

checking optional
BIO. I/0 operations for files, channels, terminals
BII. Power set operations (logical operations on Boolean

vectors).

BI and B2 specify operations applicable to all data types.

B8 specifies a restriction on conversion between types. The re-

maining requirements indicate specific types required by the

language and properties of some of these types.

2.3 Expressions and Parameters

The TINMAN requirements on e.tpressions and parameters may

be summarized as follows:

Cl. Side effects evaluated left to right
C2. Readable expressions with few levels of operator

precedence
C3. Expressions permitted whenever constants and variables

allowed
C4. Constant expressions evaluated before run time.
C5. Consistent rules for parameters of procedures, arrays,

declarations, etc.
C6. Type agreement of formal and actual parameters
C7. Classes of formal parameters
C8. Optional parameter attributes in procedure declaration
C9. Procedures with variable number of parameters

14

Cl - C4 are concerned with properties of expressions.

C5 - C9 are concerned with parameters of procedures and arrays.

2.4 Variables, Literals, and Constants

The TINMAN requirements on variables, literals and parameters

may be summarized as follows:

Dl. Identifiers with constant values may be defined
D2. Constants will have some value in programs and data
D3. Declared variables may be initialized. No default

initial values
D4. Range and step size for fixed point variables must be

specified
D5. Arrays and records may have components of any type
D6. Pointer variables must be as safe as other variables

Dl and D2 specify properties of literals and constants.

D3 - D6 specify certain properties of variables.

2.5 Definition Facilities

The TINMAN requirements on definition facilities may be

summarized as follows:

El. Users will be able to define new data types
E2. Defined types will behave like built-in types
E3.- There will be no default declarations
E4. Operations will be extendable to new data types
E5. Type definitions do not automatically inherit operations
E6. New types may be defined by enumeration, Cartesian

product, discriminated union, power set
E7. Type definition by free union and subsetting is not desired
E8. Type initialization and finalization procedures are

definable

2.6 Scopes and Libraries

Fl. Distinction between scope of allocation and scope of access
F2. Access to identifiers can be limited both at their point

of definition and point of call
F3. Scope of identifiers will be determined at compile time
F4 Libraries will be supported and easily accessible
F5. Libraries will not exclude routines written in other

languages
F6. Libraries and compools will be indistinguishable
F7. Standard library definitions for machine dependent

interfaces

is
0w

Fl - F3 are concerned with scopes and rules for accessing

identifiers while F4 - F7 are concerned with the interface be-

tween the language and libraries.

2.7 Control Structures

The TINMN requirements on control structures may be

summarized as follows:

GI. Structured control mechanisms, parallel processing,
exception and interrupt handling

G2. Go-to only within most local access scope
G3. Fully partitioned if-then-else, case statement, Zahn's

device
G4. Iterative control with local control variable
G5. Recursive and non-recursive routines
G6. Parallel processes, synchronization, critical regions
G7. User defined parameterized exception handling
G8. Real and simulated time, relative priorities, synchroniza-

tion

GI lists the desired control mechanisms. G2 - G5 indicate

desired conventional control structures. G6, G7, G8 respectively

indicate requirements for parallel processing, exception handling

C and real-time.

2.8 Syntax and Comment Conventions

Hl. Free format, statement delimiter, easily parsed
H2. No modification of source language syntax
H3. Language definable in 64-character ASCII set
H4. Formation rules for identifiers and literals
H5. No continuation of lexical units across lines
H6. Keywords will be few, reserved, informative, not con-

fusable with identifiers
H7. Uniform readable comment convention
H8. No unmatched parenthesis are permitted
Hg. No language imposed distinction between function calls

and data selection
HI0. Symbols in same context cannot have different meaning

2.9 Defaults, Conditional Compilation, LanguaQe Restriction

II. No undefined defaults which affect result of computation
12. Defaults which optimize implementation of language

features are encouraged

1M

13. Compile time variables which specify object com-
puter environment

14. Conditional compilation
15. Simple base language which allows efficient definition

of complete language
16. Translator restrictions should be part of language

definition
17. Object machine restrictions should not be part of

language definitions

2.10 Efficient Object Representation

J1. No run-time costs for unused generality
J2. Language design should allow safe optimizations
J3. Encapsulated access to hardware facilities and machine code
J4. Object representation of data structures can be specified
J5. Programmer can specify routine calls to be open or closed

2.11 Program Environment

KI. Language will not require an operating system
X2. Language will support integration of independent modules
X3. Linkers, loaders, -debuggers, and other systems soft-

ware available
(4. Documentation, editing, testing and other support

software available
X5. Optional assertions, debugging specs, measurementprobes

2.12 Translators

Li. No supersets. Features not permitted are forbidden
L2. No subset implementations will be allowed
L3. User control of optimization and compile time costs
L4. Translators for a variety of object machine;
L5. Translator is not required to run on object machine
L6. Syntax checking but not error correction by translator
L7. Error diagnostics specified as part of language definition
L8. Internal translator structure not part of language

standard
L9. Translators will be written in the source language

2.13 Language Dafinition Standards and Control

M1. Individual features must be state of the art
M2. Unambiguous and clear language definition
M3. Tutorial and reference documents, defined by abstract computv
M4. Configurations control to ensure translators conform to

standard
M5. Support agent respunsible for maintaining language and

support software
M6. Standards and support agents for libraries

17

3. Language Evaluations

3.0 Summary of Languages and Evaluations

Of the 23 languages considered, three were recommended as

base languages, eleven were recommended as relevant to the de-

sign effort or deserving of further consideration as potential

base languages and nine were regarded as not acceptable to serve

as base languages. The 23 languages are ligted below.

A: Recommended Languages (These languages each represent

a different synthesis of large amount of previous experience, and

constitute the nucleus of a family of derived languages).

1. PL/I: Includes concepts from FORTRAN, ALGOL 60 and C03oL

2. PASCAL: A successor of ALGOL 60 emphasizing simplicity

3. ALGOL 6S: A successor of ALGOL 60 emphasizing generality

B: Languages which are Relevant and Deserving of Further
Consideration

4. HAL/S: PL/I based, NASA Language, strongly typed, real-time

5. PEARL: PL/I-based, German process control language

6. SPL/I: PASCAL-based NRL real-time signal processing language

7. PDL/2: PASCAL with parallel processing, independent module

facilities, Texas Instr.

8. LTR: PASCAL-based official French common language

9. CS-4: PASCAL-based real-time with extension facilities,

Intermetrics

10. LIS: PASCAL-based French system implementation language

11. EUCLID: PASCAL-based experimental language emphasizing

verification

18

12. ECL: Extensible language with good support en-

vironment, Harvard University

13. MORAL: New British language for embedded computer

applications

14. RTL/2: Real-time British language developed at ICI

C: Languages Not Acceptable

15. FORTRAN: Developed by IBM in 1954-58

16. COBOL: Business data processing language developed in

1959-61

17. ALGOL 60: Block structure language developed in 1957-60

18. TACPOL: Army language developed in the late 1960.'s

19. CMS-2: Navy language developed in 1966-69

20. SIMULA 67: Simulatipn language developed in Norway

21. JOVIAL J3B: Air Force language developed in 1972

22. JOVIAL J73: Air Force language developed in 1969-73

23. CORAL 66: British common languageafor real-time

applications

(, (

3.1 PL/I Evaluation:

Evaluators

PL/I was evaluated by IBM and Intermetrics.

Language Descriptiqn

PL/I was developed in the period 1962-66 by an IBM-sponsored

design group. It includes concepts and features from FORTRAN,

ALGOL 60 and COBOL, taking over its expression syntax from

FORTRAIT, its statement syntax, block structure and type

declarations from ALGOL 60 and its data description facilities

from COBOL. It is rich in data types, data attributes, control

structures and input-output features. However, it is not

strongly typed and lacks extensibility, parallel processing,

synchronization and real-time features.

Overall Evaluation

IBM strongly recommended PL/I as a potential base language,

and presented a fairly detailed discussion of how the language

could be modified to meet what they interpret as essentially

the TINHAX1 requirements. Intermetrics felt that the language

should be rejected because it lacks too many of the DoD re-

quirements. It was designed for a different purpose (ex-

pressive power rather than readability, reliability and

modifiability) and it was developed before many of the modern

language features required by TINMAN were properly understood.

PL/I is the most controversial of the languages considered.

Hawever, since the use of PL/I as a base language is recommended

by an important and credible group of designers, we believe

that this group should have an opportunity to further explore

20

its approach to the development of a common DoD language.

Moreover, there is a great deal of experience in the develop-

ment of subsets and derivatives of PL/I and some of these

derivatives such as HAL/S and PEARL may well be suitable design

experience.

V Positive Features

PL/I is more widely used by an order of magnitude than any

of the other proposed base languages.

There is a great deal of experience in subsetting and

modification of PL/I.

A great deal of care and effort has been lavished on the

language definition. The defining document BASIS 1 has re-

cently been adopted as an American PL/I standard by ANSI.

The availability of this standard may make it easier to define

the modified language. The work on language definition has

resulted in a better understanding of the language which will

be helpful in language modification efforts. The tools and

support software for PL/I may'be useful in developing tools

and support software for a modified language.

I%: has already considered in some detail how PL/I

should be modified to meet the requirements of TINMAJN.

PL/I has an advantage over PASCAL and ALGOL 68 in the

area of external procedures and common data.

Ne ative Features

PL/I was designed with different cbjectives from those

stated in TINMAIX4. In particular, PL/I was designed to pro-

mote power of expression and ease of writing programs, while

11

the DoD requirements emphasize readability, modifiability,

maintainability, security, and efficiency. Achievement of the

latter kinds of objectives would require large changes in the

language specification.

PL/I was developed too early to incorporate advances of

design technology of the mid and late 1960's in the areas of

data types, control structures, extensibility, modularity,

programming methodology, etc. Such developments have not been

reflected in the recently adopted standard.

The PL/I language design suffers from a lack of design

integrity since it has not been entirely successful in in-

tegrating the wide variety of language concepts and features

from FORTRAN, ALGOL 60, COBOL, and other sources into a

single homogeneous language.

PL/I provides too much freedom of expression for the user,

attempting to assign.meanings to programs in cases which should

be treated as errors. The current emphasis is to introduce

restrictions that enforce good programming methodology.

PL/I is a complex language for which the consequences of

addition and deletion cannot be easily foreseen.

There is some concern that it would be difficult to

evaluate a language design starting from PL/I as a basi be-

cause the complexity of the base language and the magnitude of

the language changes would make it very difficult for a de-

sign evaluation team to evaluate the proposed new language.

22

.......

